Water transport by the renal Na(+)-dicarboxylate cotransporter.

نویسندگان

  • A K Meinild
  • D D Loo
  • A M Pajor
  • T Zeuthen
  • E M Wright
چکیده

This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 showed an increase in osmotic water permeability, which was directly correlated with the expression level of NaDC-1. When NaDC-1 was transporting substrates, there was a concomitant increase in oocyte volume. This solute-coupled influx of water took place in the absence of, and even against, osmotic gradients. There was a strict stoichiometric relationship between Na(+), substrate, and water transport of 3 Na(+), 1 dicarboxylate, and 176 water molecules/transport cycle. These results indicate that the renal Na(+)-dicarboxylate cotransporter mediates water transport and, under physiological conditions, may contribute to fluid reabsorption across the proximal tubule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient.

Basolateral uptake of organic anions in renal proximal tubule cells is indirectly coupled to the Na(+) gradient through Na(+)-dicarboxylate cotransport and organic anion/dicarboxylate exchange. One member of the organic anion transporter (OAT) family, Oat1, is expressed in the proximal tubule and is an organic anion/dicarboxylate exchanger. However, a second organic anion carrier, Oat3, is also...

متن کامل

Cloning and functional characterization of a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain.

Neurons contain a high-affinity Na(+)/dicarboxylate cotransporter for absorption of neurotransmitter precursor substrates, such as alpha-ketoglutarate and malate, which are subsequently metabolized to replenish pools of neurotransmitters, including glutamate. We have isolated the cDNA coding for a high-affinity Na(+)/dicarboxylate cotransporter from mouse brain, called mNaDC-3. The mRNA coding ...

متن کامل

OKP cells express the Na-dicarboxylate cotransporter NaDC-1.

Urinary citrate concentration, a major factor in the formation of kidney stones, is primarily determined by its rate of reabsorption in the proximal tubule. Citrate reabsorption is mediated by the Na-dicarboxylate cotransporter-1 (NaDC-1). The opossum kidney (OKP) cell line possesses many characteristics of the renal proximal tubule. The OKP NaDC-1 (oNaDC-1) cDNA was cloned and encodes a 2.4-kb...

متن کامل

Sodium-coupled transporters for Krebs cycle intermediates.

Krebs cycle intermediates such as succinate, citrate, and alpha-ketoglutarate are transferred across plasma membranes of cells by secondary active transporters that couple the downhill movement of sodium to the concentrative uptake of substrate. Several transporters have been identified in isolated membrane vesicles and cells based on their functional properties, suggesting the existence of at ...

متن کامل

The transport properties of the human renal Na(+)- dicarboxylate cotransporter under voltage-clamp conditions.

The transport properties of the human Na(+)-dicarboxylate cotransporter, (hNaDC-1), expressed in Xenopus laevis oocytes were characterized using the two-electrode voltage clamp technique. Steady-state succinate-evoked inward currents in hNaDC-1 were dependent on the concentrations of succinate and sodium, and on the membrane potential. At -50 mV, the half-saturation constant for succinate (K(0....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 278 5  شماره 

صفحات  -

تاریخ انتشار 2000